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BRIEF OUTLINE OF RESEARCH FINDINGS

In relevant work accomplished prior to the NASA Grant and reported in Ref. 1-3,
the results commonly referred to as Statistical Energy Analysis (SEA) have been
rederived and generalized by considering the asymptotic limit of Classical Modal
Analysis.. This approach is calied Asymptotic Modal Analysis (AMA). The general
approach is described in Ref. 1 for both structural and acoustic systems. The
theoretical foundation is presented in Ref. 2 for structural systems and experimental
verification is presented in Ref. 3 for a structural plate responding to a random force.

Work accomplished subsequent to the grant initiation has focussed on the
acoustic response of an interior cavity (e.g. an aircraft or spacecraft fuselage) with a
portion of the wall vibrating in a large number of structural modes. Ref. 4 describes our
first results and has been presented at the ASME Winter Annual Meeting in December,
1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and
Reliability in Design. Much of our work to date is summarized in Ref. 5. A copy of Ref.
5is enclosed. A journal article based upon Ref. § is in preparation.

In Ref. 4 and 5 it is shown that asymptotically as the number of acoustic modes
excited becomes large, the pressure level in the cavity becomes uniform except at the
cavity boundaries. However the mean square pressure at the cavity corner, edge, and
wall is, respectively, eight, four and two times the value in the cavity interior. Also it is
shown that when the portion of the wall which is vibrating is near a cavity corner or
edge, the response is significantly higher than when the portion of the wall which is
vibrating is placed elsewhere.

One of the interesting issues is the distance over which the pressure level
decays from a corner, edge or wall to the cavity interior. A preliminary analysis is
given in Ref. 5. Further work is in progress.
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intr ion

Coupled structural-acoustic systems are encountered frequently
in everyday life. Anytime a structure is used to attenuate or
otherwise modify sound levels to a significant degree, the structural
and acoustic properties of the system are effectively coupled. An
auditorium, classroom, concert hall, theater, or the interior of either
an automobile or an aircraft are all examples of such systems.
Accurate, efficient means to analyze structural-acoustic systems
are central to the design of structures with the desired sound
transmittal properties. Two methods commonly used to solve three-
dimensional acoustic problems are classical modal analysis (CMA)
and statistical energy analysis (SEA). Recently, Dowell and his
colleagues [1,2,3,4] have developed an additional method, asymptotic
modal analysis (AMA), which can also be applied to structural-
acoustic systems.

Classical modal analysis is a rigorous method, which produces an
exact result. However, it requires extensive computation, since CMA
takes the contribution of each mode into account. When there are a
large number of modes, as in most practical 3-dimensional acoustic
problems, CMA requires an equally large number of calculations. It is
not uncommon to have on the order of 100,000 acoustic modes in a
room acoustics problem.

Conversely, SEA, does not take the individual modal
contributions into account, leading to a significant reduction in
calculations required relative to CMA. Instead, quantities such as
modal density, average modal damping and average modal impedance
to sound sources are required. This is the advantage of SEA. The
disadvantage is that, as a statistical method, it produces statistical
results. The answers obtained are in terms of averages or means and
deviations. Therefore, SEA results do not contain any local
information.

The advantages of both these methods are incorporated in the
AMA method. Providing there are a large number of modes, the CMA



and the AMA results are nearly identical. But the computation cost
of AMA is significantly less, since it does not take the individual
modal contributions into account. An added advantage of AMA is that
the degree of generality in the final result can be controlled by
adjusting the types of assumptions and/or simplifications made in
the derivation. This allows the use of AMA to obtain results
identical to SEA, or to relax the averaging simplifications and obtain
local results, of which SEA is not capable.

To explore the capabilities of AMA, a numerical study was done
to analyze the interior sound field of a rectangular acoustic cavity.
The ratio of response predicted by classical modal analysis to that
predicted by asymptotic modal analysis was calculated either as a
spatial average or at particular locations inside the cavity. Five of
the cavity walls were rigid and therefore, did not allow the
transmission of sound. A random "white noise” sound field passed
through a portion of the sixth wall into the interior of the cavity.
The flexible vibrating portion was varied in size and location, the
resulting sound pressure levels in the interior were calculated using
AMA and CMA, and compared.

Local response peaks or "intensification zones" were observed at
boundary points, while the response in the interior region was nearly
uniform. Finally, the "transition zone" which exists between an
"intensification zone" and the nearly uniform interior response was
closely examined.
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Statistical energy analysis (SEA) has been used to study the high
frequency interaction of large, complex, multimodal structures and
acoustic spaces. The basic assumption underlying SEA is that the
dynamic parameters in the system behave stochastically. SEA
relates the power of the applied forces to the energy of the coupled
systems and produces a set of linear equations that can be solved for
the energy in each system. The energy in the system is the variable
of primary interest, and other variables such as displacement,
pressure, etc., are found from the energy of vibration. SEA has its
advantages, as well as its limitations. The main advantage of SEA is
its ability to describe the sound field without having to consider the
individual modes. Statistical energy analysis also allows for a much
simpler description of the system, requiring only parameters such as
modal density, average modal damping, and certain averages of modal
impedance to sound sources. The most significant disadvantage of
using a statistical approach is that it is only valid for systems
whose order is sufficiently high that the stochastic assumptions
apply. Certain frequency bandwidths may not contain enough modes
to allow the underlying assumptions to hold, rendering the SEA result
unreliable. In addition, the local response information is lost in the
SEA treatment. The text by Lyon [5] is the standard reference on SEA.

Dowell [1] has shown that results identical to those calculated
using SEA can be obtained by studying the asymptotic behavior of
classical modal analysis (CMA) for a general, linear (structural)
system; this asymptotic approach is called asymptotic modal
analysis (AMA). AMA is basically a modal sum method. It possesses
all of the advantages of SEA, in that the individual modal
characteristics do not play a role in the asymptotic analysis.
Additionally, AMA has advantages which SEA does not. Since AMA
results can be derived systematically from CMA, AMA allows an
assessment of the assumptions and conseguent simplifications which
are made to obtain such results. Also, by using a combination of CMA



and AMA, results can be obtained for all frequency bandwidths of
interest, not just those with a sufficiently high number of modes.
And finally, AMA has predicted local response peaks, or
"intensification zones,” results unobtainable using SEA [3,4).

Previous work has shown that the asymptotic behavior of AMA
depends upon the number of modes in a frequency interval of interest
and the location of point forces. In the limit of an infinite number of
modes, all points on the structure have the same response except for
some special areas. The exceptional areas ("intensification zones")
are near the points of excitation and near the structural system
boundary [3,4]. Numerical examples were presented for a beam in
Ref. [2). Crandall and his colleagues [6,7,8] experimentally found
"intensification zones" in their work with structures. The response
of a rectangular plate under a point random force was investigated by
Kubota and Dowell [3], and AMA calculations were found to agree
closely with experimental measurements.

Work has also been done using AMA for structural-acoustic
systems. Kubota, Dionne, and Dowell [4] examined a rectangular
acoustic cavity with one vibrating wall (the other five rigid). They
assumed the vibrating wall had an infinite number of structural
modes responding, and that the entire wall was oscillating. The
results obtained from the numerical study indicated that the
spatially averaged CMA response approaches the AMA response as the
number of modes increases. The local asymptotic response revealed

an almost uniform distribution in the cavity interior, with peaks at
the boundaries (sides, edges, and corners) of the cavity.

The emphasis of this research is on developing Asymptotic Modal
Analysis for structural-acoustic systems. Here, only a portion of
the wall vibrates rather than the entire wall, and the size and
location of the oscillating portion is varied. Also, the acoustic
"intensification zones" at the cavity boundaries and their transition
to the cavity interior are examined utilizing AMA techniques, for the
one-dimensional case.



Theory

Most coupled structural acoustic problems are modeled using
either classical modal analysis, summing for the response of each
mode, or statistical energy analysis which combines the predicted
energies of the subsystems and coupling loss factors to obtain a
final result. In this work, a comparison is made between the CMA
result and the AMA result as the number of acoustic modes and the
number of structural modes approach infinity. Note, that the
spatially averaged AMA result is identical to the SEA result.

Classical Modal Analysis

In order to calculate the response of the interior acoustic cavity
to the transmission of noise through a structural wall on its
boundary, both the structural modes of the wall and the acoustic
modes of the interior must be considered.

The equation of motion describing the structural modes of the

vibrating wall is

. . 2 E
M Qm +2 Cmmmqm + mm Qm:I = Qm

where the modal expansion for the wall deflection is
W =300 nfx,Y)
m

the structural generalized mass is

2
Mmsff mp¥,, dxdy

and the generalized force due to a given external pressure is

E E
Qmsffp‘i’mdx dy



The equation describing the acoustic modes of the cavity is:

. A A. A2 W
Pr+2f,0,Pr+\0, )P =Q

where the modal expansion for the acoustic cavity pressure is

2 P (t)F,(x,y,z
P=pLo Z r rA y.2)
M,

r

the acoustic generalized mass is

2
Mfs:—fff F,2(x.y.2) dx dy dz

and the generalized acceleration due to the structural wall is

w ..
Q .=--1—ffw F, dx dy
VJ J,

Kubota, Dionne and Dowell [Ref.4] have simplified these
equations using the following assumptions:

1. The number of structural modes is large, which implies that
the power spectra of the wall response is uncorrelated in space.
This assumption effectively removes the modal dynamics of the
structure from the problem.

2. The power spectrum of wall response is slowly varying with
respect to frequency relative to the rapidly varying transfer
function. Therefore, the power spectrum of the wall response is
treated as a constant, independent of frequency. This is often
referred to as the "white noise assumption.”

The result of applying these assumptions to the system of modal
equations is the Classical Modal Analysis (CMA) result, and is



expressed in terms of the non-dimensionalized cavity pressure
(P/poC,y?) as:

-2

P 7w Aq F(xyz)
-_--4— (I)(Jz ffF(xyz)dxdy

(PPo2)2 ( r) ( (1)

The step-by-step derivation is done in Reference [4] and is
reproduced for convenience in the appendix.

mpioti | _Angal

To obtain the Asymptotic Modal Analysis (AMA) result, further
assume the acoustic generalized mass squared (MrA)2. the frequency

of the acoustic mode cubed (mrA)3, and the acoustic damping (QrA), do

not vary rapidly with respect to modal number r and can therefore be
replaced by their values at the center frequency, (McA)2, (0c”)3, and

(LcP).  Moreover, the expression YF 2(x,y.z) [IFr2(x,y,zo) dx dy is

approximately equal to the average of Ff2(x,y,z) times

YIIF2(x,y,20)dxdy asr —e, (i.e. a large number of acoustic modes).
SIIF2(x,y,zo) dx dy can be further simplified by:

2[[ Frz(x,y,zJ dxdy = 2A1<Xf2>A, Y,2>A' Z,z(z,)>A,

which reduces to:

Aq ANg—Z
@



where <Zg2> = <F2>/<F2>pf.  <F¢2> is a volume average, and
<Fc2>p¢ is an average over the vibrating structural wall area.

Then,

-2

__p_ﬂqu)(c) A’AN<F> EF(X)’Z)
2 4
(e *V () o )§c<z r (2)

This is the AMA representation, which is derived in the appendix,
following the AMA techniques of Ref. [4].

mparisons of CMA M
In order to separate the effects of position inside the cavity
from position of the flexible portion (Af) of the wall, two ratios are
needed.
The ratio of the spatial average of CMA to the spatial average of
AMA is

5%% 2<F (Xyz)>ffF 2 xy,20 dx gy (o )<z >

(wr) aN" A, o

This is derived in Ref. 4 and can be obtained from equations (1)
and (2).

Equation (3) was used in the first half of the analysis, to assess
the intensification due to area change and position of the vibrating



portion of the wall. The spatially averaged <AMA> result which
comprises the denominator assumes that the vibrating portion was
located at positions other than in a corner or on an edge.

The separate effect of interior position was studied by taking
the ratio of the local response of CMA to the spatially-averaged AMA:

CMA z Fy (x y,z) Frz(x.y.zo dx dy (m:)3 <Zc2>
A
( r) (“’r) N A

g @

Equations (1) through (4) hold for any cavity geometry.

Rectangular Cavity

Dowell, et.al. [9] have shown that the acoustic modal function
for a rectangular cavity with a flexible wall (all others rigid) can be
described by the well-known rigid wall expansion or "hard box

modes" for the structure:
rznz
Z

Fr (X,y,Z)

In this analysis, the flexible portion of the structural wall is
allowed to vary both in size and position. Therefore, the integral
[IF2(x,y,20) dx dy in equations (3) and (4)
becomes

xn(xw +xw) 0052 fyﬂ(ywﬁy\»& cos2 r,mnz, dx,, dy.,
L, Ly, L,




where ry, ry, and rz are modal indicies, and Xwo, Ywor Xw» Yw, Ly,

and Ly are defined in figure 1. This integral can then be solved
analytically in terms of the parameters Xw,, Ywo @nd aw, by.

Ya
AY“’
4

FLEXIBLE
RIGID

— X

w
xw
o]
< >

Figure 1. The flexible vibrating portion of one wall of cavity.
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Analysis

For the numerical study, a 2' X 3' X 7' rectangular acoustic cavity
was considered (figure 2). One of the 2' X 3' walls, or a portion
thereof, was assumed to vibrate in an infinite number of structural
modes. The wall was driven with "white noise," which means all
frequencies within a certain bandwidth were present and that the
response was uniform with respect to frequency.

The effects of varying both the size and position of the vibrating
portion of the wall were studied. The size of the flexible portion
(plate) varied from full wall (100% wall area) down to a point (.004%
wall area). Initially, two cases were evaluated, converging to a point
in the center of the wall, and converging to a point in a corner of the
wall (figure 3).

The quantities used in the study were the ratio of CMA to AMA as
defined in the theoretical section. Initially, a spatial average of both
CMA and AMA were taken in order to avoid introducing the location
within the cavity as an additional parameter. Later, the local
response of corner points, edge points, points on the face, and points
in the interior were considered for the exceptional cases.
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Figure 3: Flexible area on wall converges to a point at various
locations on the wall.
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Results

ially Aver a

The ratio of the spatial average of CMA to the spatial average of
AMA (egn. 3) for the case where the oscillating portion of the wall
converges to a center point is shown in figures 4, 5, and 6. Each
figure shows the spatially averaged CMA to spatially averaged AMA
ratio for a different frequency bandwidth (200, 400, and 600 hz), as
a function of center frequency. The bandwidth, Aw, is defined. as, Aw
= Omax - Omin » and the center frequency ., as &, = Yoy ®mn  Where
®Omax and o, are the maximum and minimum frequencies of the
frequency interval. All acoustic modes are assumed to have the same
modal critical damping ratio, (.

As can be seen from figures 4, 5, and 6, all results approach
unity as the center frequency becomes large. The larger bandwidths
yield smoother curves, and the smaller bandwidths approach the
asymptote slightly more rapidly. These are expected results, and
have already been discussed by Kubota in Ref. [9]. Kubota's work was
done on a similar acoustic cavity, but with the entire wall
oscillating. What was not expected was that departure from the
entire wall oscillating, caused little change in the CMA/AMA ratio
for the cavity. This may have been due to the fact that the
oscillating "plate” was centered about the midpoint on the wall, and
that all modes are symmetric or anti-symmetric about that point.

In figures 7, 8, and 9, the results of the spatially averaged
CMA/AMA ratio (eqn. 3) for the oscillating plate of variable area and
converging to a point in the corner are shown. Again, each plot.
corresponds to a different frequency bandwidth and the results are
plotted as a function of center frequency. In this case, there are a
family of curves which approach unity as center frequency (and
therefore number of modes) increases, as expected. However, the
asymptote is approached from above rather than below, for all
plates smaller than the quarter wall. The quarter wall case is

13



equivalent, in terms of the CMA/AMA ratio, to the full wall due to
symmetry. The cases where the plate is larger than a quarter panel
approach from below as did the center point cases. For those cases
in which the vibrating wall is smaller than a quarter panel, not only
does the curve approach the asymptote from above, but, as the
oscillating portion of the wall better approximates a point, the peak
of the curve approaches 4, and is slower to drop off to the
asymptotic limit of 1. This region of elevated sound pressure level
is similar to the "intensification” zones discussed in Crandall [6,7,8]
and in Kubota, et al. [4). However, the intensification is due to
excitation location rather than response location.

In addition to these two extremes, the vibrating portion of the
wall was centered around an intermediate point and varied in size.
The results of the CMA/AMA ratio are shown in Figures 10, 11, and
12. Again, this is a spatial average of the response, which was
calculated for three frequency bandwidths, and is plotted as a
function of center frequency. This case illustrates that the limit can
also be reached in an oscillatory manner, rather than strictly from
above or below.

In addition to studying the effects of varying size and position of
the oscillating portion of the wall in a spatially averaged sense, the
local response was also calculated.

14
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Local response:
The effect of position in the cavity was determined by

considering the local response. This was again done for both
convergence of the vibrating plate to the center and convergence to a
corner. The results are presented as a ratio of CMA to spatially
averaged AMA. (Were the AMA result not spatially averaged, this
ratio would be 1.0 asymptotically for all positions. This will be
discussed in further detail in the section which follows). The ratio
was computed for many center frequencies at a constant bandwidth
of 400 hz. There was no need to vary the bandwidth, since figures 4
through 12 show little variation with bandwidth. The result was
computed for various center frequencies in 200 hz bandwidth
increments up to a center frequency of 6000 hz. However, at 6000
hz there are over 5000 modes, and the number of modes increases as
a function of the cube of the frequency. Therefore, it would be
extremely time consuming to continue taking 200 hz bandwidth
steps. Beyond 6000 hz, 1000 hz bandwidth increments were taken up
to 11000 hz. This produces a smoother looking curve beyond 6000 hz,
which is due to the larger frequency bandwidth increments.

Initially, four special response points were considered (see
figure 13), the corner point (0.,0.,0.), the midpoint of the flexible
"~ wall, the midpoint of the entire cavity, and a point on the wall along
the center line (1.8, 1.5, 0.). For these four points, the ratio of CMA
to spatially averaged AMA was plotted as a function of center
frequency in figures 14 through 17.
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Figure 13. Points at which the local response was predicted

Taking the corner point first (point A in figure 13), figure 14
shows that as the plate converges to the center of the wall, the
response of the corner approaches a "pseudo-asymptote™ of 8,
whereas, for convergence of the plate to the corner (figure 15) this
same point has a pseudo-asymptote of 32, a factor of 4 times
greater. The idea of a "pseudo-asymptote” will be discussed in the
section which follows. This factor of 4 was seen in the spatially
averaged cases as the ratio between center convergence versus
corner convergence of the vibrating plate. ’

Figures 16 and 17 show that, at the mid point of the flexible
wall (point B in figure 13), both types of convergence yield a pseudo-
asymptote of 8. Since this point is on the wall, its expected pseudo-
asymptote is 2. However, when the excitation is in the corner (figure
17), this is increased by a factor of 4, hence the value, 8. On the
other hand, when the excitation location and the response location
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are at the center of the wali(figure 16), the response there is also
increased by a factor of 4. This phenomena is similar to the
"intensification” observed by Kubota in experiments where point
loads are applied to a rectangular plate [3). The effect of a point
source is to divide the cavity into quadrants (defined by drawing
perpendicular lines through the point source). In a newly defined
sub-cavity this point where the source is located is now a corner
point. The response at a corner point is eight-times greater than the
interior region, so the pseudo-asymptote of 8 is appropriate for this
case. _

Kubota also found "hot lines" running perpendicularly through the
point force. To test for these in this analysis, a point along one of
the anticipated "hot lines" was studied. The values at this point (C
in fig. 13) are depicted in figures 18 and 19. Since this point is on
the face, it is expected to have a pseudo-asymptote of 2.0, which is
indeed the case if the full wall is moving (dotted line on both plots).
However, in the case of center convergence (i.e. analogous to a point
load acting at the center of the wall), this point lies on a "hot line"
and figure 18 shows a pseudo-asymptote of 4. Assuming the "hot
lines" divide the cavity into subcavities, this point is an edge point
of a sub-cavity. Therefore, the value of 4 is appropriate, since the
response at an edge is 4-times greater than the interior. When the
oscillating portion of the wall converges to the corner, the pseudo-
asymptote is 8, which is a factor of 4 greater than if the whole wall
is moving. This is consistent with previous findings for corner
convergence.

Response at the mid point of the entire cavity (D in fig. 13) was
also considered (figures 20 and 21). At an interior point such as
this, the expected asymptote is 1.0. However, when the plate
converges to the center of the wall (figure 20), this point lies in the
line of action of the "point force,” resulting in a factor of 4 increase,
and therefore, a pseudo-asymptote of 4. Similar to the previous
case, this point now lies on an edge point of a newly defined sub-
cavity. Edge point response is 4-times greater than the interior.

26



When the plate converges to a corner of the wall, again a four-fold
increase is expected, and the result is a pseudo-asymptote of 4,
which is shown in figure 21.

In the corner convergence cases for the wall midpoint (B) and the
cavity midpoint (D) (figures 17 and 21) five curves are actually
plotted. Only the curves representing the smallest plate area (.01%
and .004%) deviate significantly from the curve for the full wall.

The above points (A through D) were studied as the plate size
was allowed to vary, for the two convergence cases and as a function
of center frequency (for a fixed bandwidth). Next, the plate size was
fixed at .004% of the wall area, which corresponds to a vibrating
point. The center frequency was fixed at a value at which the
pseudo-asymptotes had previously been reached (8000 hz), and the
bandwidth was fixed at 400 hz. The distance into the cavity from the
vibrating wall was varied, in figures 22 and 23 the trajectory is
along an edge, while in figures 24 and 25 the trajectory is radial.

In figure 22, the sound source (vibrating point) is located in the
center of the wall, and the response is plotted along an edge. The
peak response in the corner is 8. Moving away from the corner, the
response then oscillates before approaching the asymptote for an
edge, which is 4.0. This region between the corner response peak and
the almost flat response of the interior will later be referred to as
the "transition zone." This same edge response is shown in figure 23,
for the case when the sound source is located in the corner. The
curves are basically the same shape, but the levels have increased by
a factor of 4.0, which is due to the excitation (sound source)
location. Both curves are symmetric in the z direction, which can be
shown analytically, by substituting (z-d) in for (z) in the acoustic
modal function, and using the trigonometric relations cosQ(z) =
cos2(-z), and cos(a-b) = cos(a)*cos(b) + sin(a)*sin(b).  Therefore,
only half of the edge length is plotted (3.5 feet out of 7.0 feet).

Figures 24 and 25 are plots of the response in a radial direction
away from the corner of the cavity, for the two different point sound
source locations. The radial direction is defined by the line x=y=z,

27



and the radial distance is equal to the square root of (x2 + y2 + 22 ).
In figure 24, a point sound source (or vibrating point) is located in
the center of the wall. Since the point source is in the center of the
wall, "hot lines” exist which run down the center of the cavity. Due
to these "hot lines,” which redefine new effective boundary points,
the cavity interior is no longer uniform, as is shown in figure 24.
After the radial distance of 1.0, the response begins to increase, and
approaches a value of 2.0, as if there were a wall or face there. This
is not a physical boundary created by the cavity geometry, but rather
an artificial boundary created by the point source. In figure 25, the
same radial trajectory is taken. However, since the point source is
located in the corner, the response of the interior is uniform. The
peak value in the corner is 32 (corner response point, 8 X corner
excitation point, 4 = 32). The response then oscillates, and
eventually approaches a uniform interior value of 4.0.

In summary, for a vibrating point at the center of the wall, the
asymptotic limit for points which do not lie on "hot lines™ is: 1.0 for
interior points, 2.0 for points on a tace, 4.0 for points on an edge, and
8.0 for corner points. Also, the corner convergence cases Yyield the
same relationships between locations but the magnitudes are
increased by a factor of 4. "Hot lines™ can be thought of as dividing
the cavity into subcavities or quadrants. Each subcavity then,
produces its own corner, edge and face points, redefining "effective"
boundary points.
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Di ion

The term in the CMA/AMA equation (3 or 4) which is affected by
changing the flexible area size and location of the flexible portion is
[IF12(x,y,zo) dx dy /At . This can be thought of as a spatial average
of the acoustic modal function in two dimensions (x and y). The
expected result would be 1/4, unless the argument of one or both
cosine functions (in F;) is always zero. When the plate converges to
a point in the corner, the x and y values are essentially zero, .the
value for the cosine is equal to one, and the "spatial average” above
would then be 1.0 rather than 1/4. Therefore, the effect of shrinking
the area down to the corner yields a four-fold increase.

However, one can imagine driving the frequency up so high that
the approximated corner point no longer behaves like a point
compared to an acoustic wavelength. It is for this reason, that this
has been called a "pseudo-asymptote,” rather than a true asymptote.
As the center frequency becomes sufficiently large, the true
asymptote will always be 1.0 for the spatially averaged CMA/AMA
ratio.

The analysis has been done for the ratio of spatially averaged
CMA [Spatial average denoted by < > ] to spatially averaged AMA :
<CMA>/<AMA>, and for the local CMA response divided by spatially
averaged AMA. If the local AMA to spatially averaged AMA (<AMA>)
ratio were known, the local CMA to local AMA ratioc could be deduced.
This would (providing the result were 1.0 for a large number of
modes) add to the credibility of AMA. Thus, consider the following.

The local AMA result is (equation 2):

s——A—CI)(J A,AN<F> zF (x.y,2)
2 2 2
(p.,coz) tv (M:)( )Cc Ze/ ! (2)
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whereas, the spatially averaged AMA result is: (derived in
[Ref.4)])

m

_2 A 2
p n AN (A, ) Ao P ()
4 A\ V

(pocoz)z Ao (w:)a & <Zc2> (5)

Therefore, the ratio of local AMA to spatially averaged AMA is:
(AMA)joca) / <AMA><zial average = (ZFr2(x.y,2)/ANA) / <F¢2>

The numerator, (XF 2(x,y,z)/ANA), is equal to Vy*1p°1s, oOf
/g when x, y, and z are not zero or Ly, Ly, L,. ltis equal to
(1/2)*(1/2)*(1) or (1/4) when one of the values of x, y, or z are equal
to 0 or the length of the cavity in the appropriate direction, which is
true on any face.

For an edge, the numerator, (XF 2(x,y,z)/ANA), is equal to
(1/2)*(1)*(1) = (1/2), since two values of x, y, or z are equal to 0 or
the length of the cavity in their direction. And (T F2(x,y,z)/ANA)

is equal to (1)*(1)*(1) = (1) in a corner, since all three values of x, v,
or z will either be 0 or Ly Ly, L;.

The spatially-averaged acoustic modal function evaluated at the
center frequency, <F02>, which comprises the denominator of the
(AMA)(ocal / <AMA> o101 average  Tatio, is always equal to
(1/2)*(1/2)*(1/2) or 1/8.

Therefore, the (AMA)joca/<AMA>gpatial average €aN be summarized in
the following table. For a

corner (1)/(1/8) 8
edge (1/2)/(1/8) 4
face (1/4)/(1/8) 2
interior (1/8)/(1/8) 1
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Recall that local CMA to spatially averaged AMA for the center
convergence case Yields pseudo-asymptotes of :

8 in the corner
4 on an edge

2 on a face

1 in the interior

This indicates that for a large number of modes, the asymptotic
modal analysis results agree locally with the exact results predicted
by classical modal analysis when the oscillating wall is a full wall
or converging toward the center. For corner convergence, the
multiplicative factor of 4 must be accounted for as explained
previously.

This factor of 4 is due to the fact that in deriving the AMA result
used in this study it was assumed that the excitation occurs at a
location other than in a corner or on an edge. It is possible to
incorporate the excitation location effect into the AMA result, if it
is desired.

39



Intensification

Acoustic theory predicts, and the previous numerical work has
shown, that there are local asymptotic response peaks or
"intensification zones" in the acoustic field near the cavity boundary,
and an otherwise uniform response in the interior region. In
particular, for a rectangular acoustic cavity, the mean square
pressure is eight-, four-, and two-times the uniform interior
pressure levels at the corners, edges and faces, respectively.

In designing acoustic spaces, allowances must be made for these
intensification zones. Therefore, it is important to determine the
characteristic distance over which the response levels change from
their peak values at the boundary to the uniform interior level.
Parameters such as, cavity dimensions, frequency bandwidth, and
center frequency may play a role in determining the size of
this"transition zone,” where the response levels are neither their
peak values nor the uniform interior level. It is desirable to
determine which parameters affect the transition zone, and which do
not. This knowledge may allow the design of a cavity with rapidly
decaying intensification zones.

As a first step, the one-dimensional case was considered. From
the 1-d case, insight into the 2- and 3-d cases can be gained.

Analysis
The non-dimensional pressure ratio which is used in the

examination of the one-dimensional transition zone is derived from
equation 1. A ratio is taken of the sound pressure level from
equation 1 1o its spatially-averaged value. After cancelling the like-
terms, the result is:
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Fr (x.y,2)
T

<"> iy
2

and considering only a 1-dimensional acoustic wave:

) (=)

p .

(6)

(7)

Assuming a large number of acoustic modes allows the summation
over n to be replaced by an integration (n is then treated as a
continuous variable). Noting that the spatial average of cosine
squared is 1/2 and that o = nnc/Ly yields:

r 2{ nnx
cos ( Lx_) (nm)s .
J .

(8)
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The variable n can be replaced by o or f, in order to obtain a
result in terms of frequency, by the relations:

o= nnc/ly , f=2nw, which leads to n = 2Lxf/c

The final result in terms of frequency after doing the integration

is:
2 2
f f 4nxf[f f
< ¢c0s8,- —COS 6+ Tl —Lsing,- —<sing| +
2 2 2 c \fy f
{4 fe fy fy
(22 drxd 2
u’- | nxc . .
Cie,)- Cie
(£2%) (o) ce)
(9)
where:

fc is the center frequency, and fp is the frequency bandwidth,
fi and fy are defined as the lower & upper frequencies of the
frequency interval as follows:
fu - fl =fb, and fc = Vil * fu
and,
0] =2 *kex * i/ fc kex = (2nfe)x / c
8u =2 *kex * fu/fc
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Therefore, the ratios fi/fc, and fy/fc can be obtained from f/fc,
using the above definitions. In fact, the entire expression (9), can be
expressed in terms of fp/fgc, and kcx, where kex is the wave number
associated with the center frequency times the distance away from
the end point.  Therefore, knowing the ratio of frequency bandwidth
to center frequency (fp/fc), the pressure function in the transition
zone can be plotied as a function of distance away from the endpoint,
kex. Note that the dimensions of the cavity do not appear in this
result.

Results and Discussion

Plots are shown in figures 26 through 34 of non-
dimensionalized pressure ratio versus kcgx for various fp/fc ratios.
An fp/fc ratio of .005 approximately simulates a tone, while an fp/fc
ratio of .239 corresponds to a 1/3 octave bandwidth, and fp/fc = .500
represents an octave bandwidth.

The first three plots are for the “tone-like" case. It is "tone-
like" because of the small fp/fc ratio which corresponds to a narrow
bandwidth at a high center frequency. However, it is not a "pure
tone™ because more than one frequency is present. Figure 26 shows
the non-dimensionalized pressure ratio versus kcx, where the
pressure ratio is calculated using an integration (similar to an AMA-
type calculation) rather than a summation over all the modes. For
comparison, figures 27 and 28 show the same ratio calculated as a
summation over all the modes (this is similar to a CMA type
calculation). In figure 27, only 2 modes are summed. This response
starts to decay around kcx = 25. Figure 28 shows the response when
26 modes are summed for the same fp/fc ratio. This summation case
more closely resembles the integration case, even though only 26
modes are included in the summation. Since the agreement is fairly
good, at least to a kex value of 50, between the integration (AMA-
type) and the summation (CMA-type) results, this suggests that the
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integration is reasonably accurate even when a relatively few
number of modes are present.

Results are shown for the 1/3 octave band case in the next three
figures. Figure 29 is a plot of non-dimensionalized pressure ratio
versus kcx calculated by integration rather than summation over all
the modes. In figures 30 and 31, plots are shown of the summation
over 15 modes and 479 modes. Agreement between integration and
summation is best for the 479 mode summation. However, for the 15
mode summation plot the overall envelope of the function is still
preserved. .

Figures 32 through 34 are plots of the non-dimensionalized
pressure ratio versus kcgx for the octave band case. The results are
similar to the 1/3 octave band case. The summation over the larger
number of modes matches integration best, although the envelope of
the function is still preserved for summation over relatively few
modes.

Replacing the summation with an integration is only valid when n
can be treated as a continuous variable, i.e. when there are a large
number of acoustic modes. However, these plots indicate that even
when there are only a few modes the overall envelope is still
preserved. For most applications, it is actually the envelope which
is important. Therefore, the integration does quite well even at low
center frequencies (or frequency ranges with relatively few modes).
Which also indicates that the AMA method may also be accurate when
there are relatively few modes in a given frequency range.

Another interesting outcome of the 1-d transition zone study is
that the parameters which determine the size of the transition zone
and the shape of the pressure function are kgx and fp/fc . The cavity
(in this case, 1-d) dimensions are not a factor. Therefore, the size of
the transition zone does not depend upon the length of the 1-
dimensional cavity. Extrapolating this result to the 3-d case, cavity
dimensions are not the key parameters which determine the
intensification area or "transition zone." The ratios of Lx, Ly, and Lz
to each other may be important. The one-dimensional case can not
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predict this. But, the actual size of the cavity does not enter into
the problem directly.
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Conclusion

An Asymptotic Modal Analysis approach has been developed and
applied to a coupled structural-acoustic problem. It is broadly
applicable to any linear dynamic system regardless of geometry. It
is an extremely flexible approach, and can be developed in accord
with the nature of the system under study through inclusion or
exclusion of a series of simplifying assumptions. This technique can
thereby bridge the gap between CMA and SEA in terms of
computational requirements and predictive capability. Insofar as
AMA is developed from Classical Modal Analysis, it retains the
capability to predict spatial variations (intensification) in sound
pressure levels or other relevant responses, something of which SEA
is not capable. Simplifications arising from the nature of the forces
and the number of structural and acoustic modes involved result in a
process which does not require individual modal characteristics.
This greatly reduces the number of calculations required relative to
CMA

A rectangular acoustic cavity, with five rigid walls, was chosen
to investigate the capabilities of AMA. Spatial averages and local
behavior for sound pressure levels were calculated for a number of
cases involving the location and size of the sound source on the wall.
For the spatially averaged cases, a strong effect of sound source
location on average sound pressure levels in the cavity was noted. In
particular, intensification due to source location was observed, such
that, when a point sound source was located in the corner as opposed
to the center of a wall, the spatially averged sound pressure ratio
was increased by a factor of 4.

In addition to the spatial average, the local response was also
calculated. Kubota, et.al. [4] found that the response of the cavity
interior is nearly uniform, with the exception of points on the
structural boundary (walls, edges, and corners), when one entire wall
of the rectangular cavity is vibrating. However, when only a portion
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of one wall vibrates, and particularly when this portion approaches a
vibrating point, there are further exceptions. Perpendicular lines
("hot lines™) which run through the vibrating point were found to
divide the cavity into sub-cavities, which have new corners, edges,
and walls. On these newly defined sub-structural boundaries, the
local response is also elevated. Such that, new corners, edges, and
walls, exhibit the same relative increase as the original corners,
edges and walls do, which is 8, 4 and 2 times greater than the
interior, respectively. Kubota found similar "hot lines" in applying
point forces to a rectangular plate [3].

The intensification zone for a 1-dimensional cavity was closely
examined in the asymptotic limit. The shape of the sound pressure
function, and therefore, the size of the intensification zone, were
determined by a ratio of center frequency and frequency bandwidth.
The length of the cavity did not play a role in determining the
intensification zone. Extrapolating this result to the 2- and 3-
dimensional cases, leads to the conclusion that the intensification
zone is independent of the lengths (x, y, and z) of the cavity, and may
therefore, be independent of the geometry of the cavity, as well.
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re _Wor

The work which has been done, thus far, regarding the
application of AMA to structural-acoustic systems, has assumed that
the number of responding structural modes was infinite, i.e. AMA was
invoked for the structural wall from the beginning. This allowed
certain simplifications to be made in deriving the AMA result for the
acoustic cavity, which would not be valid otherwise. Future work
should include the derivation of an AMA result for the case of a finite
number of responding structural modes, and an infinite number of
acoustic modes. The case of a finite nhumber of acoustic modes, and
a finite number of structural modes is CMA for both the structural
wall and the acoustic cavity.

The intensification zones are of importance for interior noise
studies. Therefore, future work should include examination of the
transition zone for the 2-dimensional and 3-dimensional cases, in
addition to, the 1-dimensional case discussed in this thesis.

The previous work has been entirely theoretical and numerical.
For verification of the AMA method, experiments should be performed
and the results compared with the numerical results already
obtained.
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APPENDIX A: DERIVATION OF CMA AND AMA RESULTS FOR
A RECTANGULAR ACOUSTIC CAVITY

Al



The equation of motion describing the structural modes of the

vibrating wall is (see Retf. 1, 2, and 3 for technical background).

.. . 2 E
MJQm+2cmmem+wQO_]=om (1)

where the modal expansion for the wall deflection is

w = 2 Qm(t)¥ m(x.y)
m (2)
the structural generalized mass is

2
Mmsff mp¥,, dxdy
. (3)

and the generalized force due to a given external pressure is

E E
Qmsffp‘i’mdx dy
Ay

(4)
The acoustic cavity modal equation is:
. A A. AV W
Pr+20,0,Pr+\o, /) P =Q (5)

where the modal expansion for the acoustic cavity pressure is

D wpLo § : P(t)F:(x,y.2)
A
My

r
(6)
the acoustic generalized mass is

Mfslfff F,2(x.y.z) dx dy dz
VI (7)

and the generalized acceleration due to the structural wall is

w ..
Q a-lffw F, dx dy
VJ J,,

A2

(8)



Define f, a non-dimensional cavity pressure,
f(t,x,y,z)_=._9_2_
PLo
From (6) the auto-power spectrum of f may be determined as

F
ZZ x: 2) (le 2) ®pp,
M, M, (9)

where the cross-spectra are defined as

®(w,x,y,2) =

1 - iwt
d)PrP.E—f Rpp.(t)e dt
e (10)
and the cross-correlations of the modal generalized pressure
coordinates are

Rp,p, = 7!im_ 2T.[ P,(1)P¢(1 + 1) dt -

Similarly from (8) the cross-power spectra of QW and QsW are

Gl w) =_1_ff ff Fr(x,y,z) Fg (x*,y*,2*) @ (w:x,y,z) dx dy dx* dy*
v2 At Af

(12)

From (5) and standard random response theory, the relationship
between ®p pg and ® W W is

A A
d)p,P‘(w) = Hr (w)Hs('w) d)Q:”Q:(w) (1 3)
where the modal transfer function is defined as
H(w) = - L ,
[ 2 ( A)z A A ]
0 +\0, ) +2if,0,0 (14)
From (9), (12), and (13)
F.(x,y,z) Fdx,y,2
D (0:x,y,2) = — 22 4 :’ ) Fdl Z )H()H(co)
V M, M,

‘ff ff Fr(x’Y-ZJFs(X',Y*.Z:)¢;{,(w;x,y,x‘,y‘)dxdydx*dy.
i ) (15)
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This is the basic expression for the power spectra of the cavity
pressure in terms of the power spectra of the wall acceleration.
When the number of excited structural modes is large, AM — o,

it can be shown that
O, (@:x,Y,x*,y*) = Ady(w) 8(x-x*) 8(y-y™) (16)

This means that the power spectra of the wall response is
uncorrelated in space. This assumption is reasonable for large AM,

because

1

— DXy, x",y") - 0 (X=X, y2y )
AM

constant (x=x*,y=y")

as AM — o (1 7)
Recall, [Ref. 1,2]

A 2
o (@iX,Y X", Y*) = 2 D Y)W (XY ") 0 m Hn(@)Hy(-0)

ff F (x,y,29F¢(x,y,z9dx dy
At (18)

(17) is readily derived from the above relationship and invoking the
basic methods of AMA.
Also for a smoothly varying power spectrum, it is assumed that

Oo(w) =0, (w) (19)
This is just the usual white noise assumption. Thus, Eq. (15)
becomes

@ (0X,y,2) ='—A—;—.d>;‘;(a)t) ZZF'("’Z'Z).FS(X’:’Z). H (). Ho(-o)

\V rs M, M
ff Fo(x,y,z9F¢(x.y.z) dxdy
Al

(20)
The mean square response of the non-dimensional cavity pressure is
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_2
_2 -
f Eu&ﬂgf ®,(0;x,y,2) do
0

be)

2
A F.(x,y,z 2
El—;-d’v'&(wJ 2 '(2 Y 3) ff Fr (x,y,z) dxdy
4 Vv r ( A) A~ A Al
M) o L,

(21)

This is the local CMA result which is referred to in this thesis. Note,
that the structural wall is assumed to vibrate in an infinite number
of modes, hence this result is AMA for the structural wall, but CMA
for the acoustic cavity, (i.e. a finite number of acoustic modes).

Taking a spatial average of (21), and noting that (M;A)2, (0A)3,
(¢rA), and <(F2> do not vary rapidly with respect to modal number, ,
for large ANA, Eq. (21) becomes

2 g 2
P/ - % ) foF(xszdxdy

r
Ged
PLo M (D Ce (22)
which is the spatially averaged CMA result referred to in the thesis.
Now consider a cavity acoustic modal function
Fr(X,Y»Z) = Xr(X)Yr()/)Zr(Z) (23)
Take the plane at z = z; as the boundary of the acoustic cavity where

the structural wall is vibrating. Zr(zy) is usually independent of
mode number r or it can be so normalized. Thus, for large ANA,

2[[ Fra(x.y.z,) dxdy = ZA1<Xr2>A, Y,2>A,<Z,2(29>A'

which reduces to:
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A ANA%
2\ _ <Ff>
<ZC> ) <F5>A;
My = <Ff>
@Aw =Aw @, (w)

< ....>denotes spatial average. <F¢2> is a volume average of F¢2, and
<Fc2>Af is an area average over the vibrating structural wall. Hence,
eq.(22) becomes as ANA - o,

_ A 2 <2>
5 T AN (i‘_f) W /e
4 A
Aw

O B A

<..2> 4 __2>
Now W AwE O, \W Ac (25)

and from the AMA results for structural wall motion,

<_2
’VV >Am.'—1 zr-— AM F ao
4 Aw

where

and

n

> 3
Mp @ ¢ (26)

Finally then, Eq. (24) becomes

( 2)2 4 Aw AO)A v Aw A3 A 2< 2>
PLo o, Lo M N\Zc (27)

_2 2 A 2 A —2>
P =(1) AMAN_(é_f) bo 0 \F /s
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This is the gpatially averaged AMA result, which is used in the
denominator of the non-dimensionalized pressure ratios throughout
this thesis. (AMA is applied to both the structural wall and the
acoustic cavity).

To obtain the local Asymptotic Modal Analysis (AMA) result from
the local CMA result (equation (21)), further assume the acoustic
generalized mass squared (M,A)z. the frequency of the acoustic mode

cubed (0 A)3, and the acoustic damping ({;A), do not vary rapidly

with respect to modal number r and can therefore be replaced by
their values at the center frequency, (McA)2, (wcA)3, and ({cA).

Moreover, the expression YF2(x,y.z) HFrz(x,y,zo) dx dy is
approximately equal to the average of Fr2(x,y,z) times
SIIF 2(x,y,zg)dxdy asr —eo, (i.e. a large number of acoustic modes):

SF(x.y.2)

r 2
L3 f [ Fity.zioncy
AN r At

mn

2
ZFf(X:Y-Z)ff F((X,Y,ZJdXdy
4 At

YI[Fr2(x,y,zp) dx dy can be further simplified by:

Zf[ F,z(x.y,zJ dxdy = ZA1<Xf2>A,<Y,2>A,<z,2(ZL)>A’

which reduces to:

A, ANA—<£°—22
@)
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where <Zg2> = <Fg@5/<F2>p1.  <Fg2> is a volume average, and
<Fc2> ¢ is an average over the vibrating structural wall area.

Then,

__5_2__"A'cb(c) 'AN<F> ZF (x.y.2)
2
(pocoz) v (Mf)( )C z.)

This is the AMA representation for the local response.
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APPENDIX B: COMPUTER PROGRAMS
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000 00000 0OOOONOO0O0ON0N0ON0N

oN®] oNoNoNONS! oNONP! oNe]

oNOoNe]

MATIN PROGRAM
CALCULATES CMA TO AMA RATIO FOR CAVITY X_LENGTH

BY Y_LENGTH BY Z_LENGTH
FLEXIBLE PLATE ON ONE WALL VARIABLE

ASSUMES ACOUSTICAL AND STRUCTURAL DAMPING ARE EQUAL

INPUT: STORED IN FILE CAVITY.IN, FREE FORMAT
SPEED OF SOUND
X_LENGTH, Y_LENGTH, Z_LENGTH

ALSO, NEEDED FOR PART OF WALL FLEXIBLE:
XWO0, YW0 THE X & Y COORDINATES OF FLEX PART
AW,BW THE X & Y DIMENSIONS OF FLEX PART

number of locations - as well as the x,y,z components

REAL*8 BANDWIDTH
DIFFERENCE IN UPPER AND LOWER
FREQUENCY BOUNDS

INTEGER*4 BW_LOOP
LOOP INDEX FOR BANDWIDTH

REAL*8 C
SPEED OF SOUND

REAL*8 CENTER_FREQ
CENTER FREQUENCY OF BANDWIDTH
DEFINED AS SQUARE ROOT OF THE
PRODUCT OF THE UPPER AND LOWER
FREQUENCY BOUNDS

INTEGER*4 CFREQ_LOOP
LOOP INDEX FOR CENTER FREQUENCY

REAL*8 CMA_TO_AMA_RATIO
RATIO OF MEAN SQUARE RESPONSE OF
CAVITY PRESSURE OBTAINED FROM
CLASSICAL MODAL ANALYSIS TO THAT
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N0 o000 00 onono0on 060 onono 000 0ono

oNoNe

INTEGER*2

INTEGER*4

REAL*8

LOGICAL

INTEGER*4

INTEGER*2

INTEGER*2

INTEGER*2

REAL*8

REAL*8

DERIVED FROM ASYMPTOTIC MODAL
ANALYSIS

INPUT_UNIT1
INPUT UNIT
READS FROM "CAVITY.IN"

INDEX
VALUE OF INDEXING LOOP PASSED
TO SUBROUTINE VARFREQ

LOWER_FREQ

LOWER FREQUENCY IN BANDWIDTH

MODE_CHECK

ERROR CODE FROM SUBROUTINE MODES
TRUE IF MODES EXIST IN SPECIFIED
BANDWIDTH, FALSE IF NO MODES ARE
FOUND

NUMBER_OF_MODES
NUMBER OF MODES IN BANDWIDTH

OUTPUT_UNIT1
OUTPUT UNIT FOR PLOTTING DATA
WRITES TO "CARAT.PLT"

OUTPUT_UNIT2
OUTPUT UNIT FOR ERROR MESSAGES
WRITES TO "CARAT.ERR"

OUTPUT_UNIT3
OUTPUT UNIT FOR PRINTED OUTPUT
WRITES TO “"CARAT.OUT"

UPPER_FREQ

UPPER FREQUENCY IN BANDWIDTH

X_LENGTH, Y_LENGTH, Z_LENGTH

ROOM DIMENSIONS
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REAL*§ XW0, YWO0
COORDINATES OF FLEX PART

REAL*8 AW, BW
DIMENSIONS OF THE FLEXIBLE PART

integer*2  num_loc
number of locations

integer*2 restart
Restart = 1 (restarting from a previous run)
Restart = Q0 Fresh start : everything new

integer*2 BWopt
BWopt =1 user specifies the bandwidth
BWopt =0 200, 400, 600 bandwidths done
for 30 center frequencies

integer  count

INPUT_UNIT1 = 50

OUTPUT_UNIT1 = 55
OUTPUT_UNIT2 =56
OUTPUT_UNIT3 =57

BANDWIDTH =0.0
LOWER_FREQ = 0.0
UPPER_FREQ = 0.0

MODE_CHECK =.TRUE.

FREQ_COUNT =0
CMA_TO_AMA_RATIO =0.0

READ IN SIZE OF ROOM AND SPEED OF SOUND
OPEN(UNIT=INPUT_UNIT1,ERR=300,FILE="CAVITY.IN",STATUS='0OLD")

READ(INPUT_UNIT1,*) C

READANPUT_UNIT1,*) X_LENGTH, Y_LENGTH, Z_LENGTH
read(input_unit1,*) xw0, yw0

read(input_unitl,*) aw, bw
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read(input_unitl,*) num_loc
read(input_unit1,*) restart
read(input_unit1,*) BWopt
CLOSE(UNIT=INPUT_UNIT1)
C
OPEN(UNIT=OUTPUT_UNIT1,ERR=31 O,FILE="spacc.out",STATUS='NEW')

c
OPEN(UNIT=OUTPUT_UNIT2,ERR=320,FILE="CARAT.ERR",STATUS ='NEW’)

C
OPEN(UNIT=OUTPUT_UNIT3,ERR=330,FILE="CARAT.OUT",STATUS='NEW')

if(restart.eq.1) then

open(unit=53, file = "weights.out", status = ‘old")
else

open(unit=54, file = "weights.out", status = 'new")
endif

WRITE(OUTPUT_UNIT1,FMT=500) C
WRITE(OUTPUT_UNIT1,FMT=501) X_LENGTH, Y_LENGTH, Z_LENGTH

WRITE(OUTPUT_UNIT1,FMT=555) XW0, YWO0, AW, BW
write(output_unitl,fmt=551) num_loc,restart,bwopt

O

User may just be interested in one bandwidth

if (bwopt.eq.1) then
open (51, file="inputbw.dat", status = 'old’)
read (51, *) upper_freq, lower_freq
count =1
CALL MODES(UPPER_FREQ,LOWER_FREQ,X_LENGTH,Y_LENGTH,
& Z_LENGTH,count,xw0,yw0,aw,bw,C,num_loc restart, ‘
& CMA_TO_AMA_RATIO,MODE_CHECK,NUMBER_OF_MODES)

write (6,%) num_loc,restart,c
goto 100
else

DO CFREQ_LOOP = -2,27
CENTER_FREQ = 600. + FLOAT(CFREQ_LOOP) * 200.
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WRITE(OUTPUT_UNIT1,FMT=502) CENTER_FREQ
WRITE(OUTPUT_UNIT2,FMT=400) CENTER_FREQ
WRITE(OUTPUT_UNIT3,FMT=502) CENTER_FREQ
WRITE(OUTPUT_UNIT3,FMT=550)
WRITE(OUTPUT_UNIT3,FMT=505)
WRITE(OUTPUT_UNIT3,FMT=550)

OOOOOOO

DO BW_LOOP =1,5,2
do bw_loop = 3,3
INDEX = BW_LOOP
CALL VARBW(INDEX,CENTER_FREQ,UPPER_FREQ,LOWER_FREQ,
& BANDWIDTH)
if (center_freq.eq.200.) then

count=1

else

count=0
endif

CALL MODES(UPPER_FREQ,LOWER_FREQ,X_LENGTH,Y_LENGTH,
& Z_LENGTH,count,xw0,yw0,aw,bw,C,num_loc,restart,
& CMA_TO_AMA_RATIOMODE_CHECK,NUMBER_OF_MODES)

ENDDO
ENDDO
endif

C

100 CLOSE(UNIT=OUTPUT_UNITI)
CLOSE(UNIT=OUTPUT_UNIT2)
CLOSE(UNIT=0OUTPUT_UNIT3)

o o

WRITE(6,FMT=800)
C
GO TO 1000
C
200 FORMAT(2(F10.4,5X))
C
300 WRITE(6,301)

301 FORMAT(5X,***ERROR ENCOUNTERED ACCESSING INPUT FILE
CAVITY.IN)

GO TO 1000
310 WRITE(6,311)

311 FORMAT(5X,***ERROR ENCOUNTERED ACCESSING OUTPUT FILE
CARAT.PLT")
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GO TO 1000
320 WRITE(6,321)
321 FORMAT(5X,***ERROR ENCOUNTERED ACCESSING OUTPUT FILE
CARAT.ERR")
GO TO 1000
330 WRITE(6,331)
331 FORMAT(5X,***ERROR ENCOUNTERED ACCESSING OUTPUT FILE
CARAT.OUT)
GO TO 1000
C
490 FORMAT(2X,'ERROR MESSAGES FOR CARCF WITH CENTER FREQUENCY

& F10.3,' HZ')
420 FORMAT(2X,'NO MODES FOUND IN BANDWIDTH OF 'F10.3,' HZ))
Cc
500 FORMAT(2X,'SPEED OF SOUND IS 'F10.2)
501 FORMAT(2X,'CAVITY IS 'F10.3, FT BY 'F10.3, ' FT BY "F10.3,' FT

&')
502 FORMAT(2X,'CENTER FREQUENCY IS 'F10.3,' HZ")
505 FORMAT(5X,, BANDWIDTH '4X,CMA TO AMA RATIO4X,
& 'NUMBER OF MODES IN BAND")
510 FORMAT(5X,F10.2,18X,F8.5,10X,15)
550 FORMAT(5X,'")
551 format(5x,'number of points =',1x,i3,5x,'options are:"/,
* 45x,'restart opt - ',i2,/,45x,'bandwidth opt - ',i2,/)
555 FORMAT(X, FLEXIBLE PART BEGINS AT X ='F10.3,"Y ='F10.3,
&/.2X,'FLEXIBLE DIMENSIONS ARE: 'F10.3,'BY'F10.3,)
C
&O}({);ORI\MT(ZX,'OUTPUT 1S IN CARAT.OUT, POINTS FOR PLOTTING ARE IN
&T.PLT)
C
1000 CONTINUE
C
STOP
END
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USED FOR SPATIALLY AVERAGED CMA/SPATIALLY AVERAGED AMA RATIO
SUBROUTINE MODES(UPPER_BOUND,LOWER_BOUND,

& X_LENGTH,Y_LENGTH,Z_LENGTH,
& xw0, yw0, aw, bw, C,
& CMA_TO_AMA_RATIO,ERROR_CODE,
& FREQ_COUNT)
C
C CALCULATES NATURAL FREQUENCIES OF ROOM
C X_LENGTHBY Y_LENGTHBY Z_LENGTH
C
C

REAL*8 BANDWIDTH
DIFFERENCE BETWEEN UPPER AND
LOWER FREQUENCY LIMITS

oNONY!

REAL*8 C
SPEED OF SOUND

oNORY

REAL*8 CENTER_FREQ
CENTER FREQUENCY OF BANDWIDTH
DEFINED AS SQUARE ROOT OF THE
PRODUCT OF THE UPPER AND LOWER
FREQUENCY BOUNDS

OO0

REAL*8 CMA_TO_AMA_RATIO
RATIO OF MEAN SQUARE RESPONSE OF
CAVITY PRESSURE OBTAINED FROM
CLASSICAL MODAL ANALYSIS TO THAT
DERIVED FROM ASYMPTOTIC MODAL
ANALYSIS

OoOOO0O0O0O0

LOGICAL ERROR_CODE
.TRUE. RETURNED IF MODES ARE FOUND
WITHIN THE SPECIFIED BANDWIDTH
JFALSE. RETURNED IF NO MODES
ARE FOUND

INTEGER*4 FREQ_COUNT
COUNTS NUMBER OF ACOUSTICAL
MODES IN SPECIFIED BANDWIDTH

NoOn 00000
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REAL*8 FREQUENCY
NATURAL FREQUENCY OF MODE

INTEGER*2 1
INDEXING PARAMETER

INTEGER*4 INTEGRAL_WEIGHT(10000)

REAL*8 LOWER_BOUND
LOWER FREQUENCY IN BANDWIDTH

REAL*8 SORTMAT(10000)
MATRIX OF FREQUENCY VALUES

REAL*8 UPPER_BOUND
UPPER FREQUENCY IN BANDWIDTH

REAL*8 X_LENGTH, Y_LENGTH, Z_LENGTH,3,b,l,m
ROOM DIMENSIONS

real*8 fintegral(10000)
vector of integral of modal function
of flexible wall over the flex portion

INTEGER*2 XMODE,YMODE,ZMODE
INDEXING PARAMETER FOR MODES

INTEGER*2 XMODEMAX,YMODEMAX,ZMODEMAX
MAXIMUM MODE INDEX

INITIALIZE SORTMAT TO ZERO, INTEGRAL_WEIGHT TO 2

REAL*8 XW0, YWO

COORDINATES OF FLEX PART OF WALL
REAL*8 AW, BW

DIMENSIONS OF FLEX PART OF WALL

real*8 f1, 12, f3, {4, f5, 16, {7, {8, {9
separate terms in integral

BS
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pi=3.1415925
a=x_length
b=y_length
X0 =XW0/A
YO0 =YWQ/B
AWA = AW/A
BWB = BW/B

DO 1= 1,10000
SORTMAT(1)=0.0
INTEGRAL_WEIGHT() =2

ENDDO

FREQ_COUNT =0
ERROR_CODE =.TRUE.

CENTER_FREQ = DSQRT(LOWER_BOUND * UPPER_BOUND)
BANDWIDTH = UPPER_BOUND - LOWER_BOUND

CALCULATE MAXIMUM MODE INDICIES FOR SPECIFIED BAND

XMODEMAX = INT(UPPER_BOUND * 2.0 * X_LENGTH/C)+2
YMODEMAX = INT(UPPER_BOUND *2.0* Y_LENGTH/C) +2
ZMODEMAX = INT(UPPER_BOUND *2.0*Z LENGTH/C)+2

DO XMODE = 0, XMODEMAX
DO YMODE =0, YMODEMAX
DO ZMODE = 0, ZMODEMAX
if (freq_count.gt.10000) go to 200
FREQUENCY = .5 * C * DSQRT((XMODE/X_LENGTH)**2.0
+ (YMODE/Y_LENGTH)**2.0
+ (ZMODE/Z_LENGTH)**2.0)
IF (FREQUENCY .GE. LOWER_BOUND ) .AND.
& (FREQUENCY .LE. UPPER_BOUND)) THEN
FREQ_COUNT = FREQ_COUNT +1
SORTMAT(FREQ_COUNT) = FREQUENCY
IF (ZMODE .EQ. 0) THEN
INTEGRAL_WEIGHT(FREQ_COUNT) = 1
ELSE
CONTINUE
ENDIF

Po P
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C  forportion of wall flexible the following has been added:
L=XMODE*2* Pl
M =YMODE * 2 * PI

C
F1 =AW * BW

if (xmode.eq.0) then
f2=AW *BW
f3=0.
go to 60

endif

F2 =BW * (A/L) * COS(L*X0) * SIN(L*AWA)
F3=BW * (A/L) * SIN(L*XO0) * (COS(L*AWA) -1)
c
60 if (ymode.eq.0) then

f4 = AW * BW

f5=0.

goto 70

endif

F4 = AW * (B/M) * COSQM*YOQ) * SIN(M*BWB)
F5 = AW * (B/M) * SIN(M*YO0) * (COS(M*BWB) - 1)
C
70 if ((xmode.eq.0).and.(ymode.eq.0)) then
f6 = aw * bw
f7=0.
f8=0.
f9=0.
goto 100
endif

if (xmode.eq.0) then
f6 =14
f7=15
f8=0.
f9=0.
goto 100
endif

if (ymode.eq.0) then
fo=12
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endif

F6 = (A/L) * (B/M) * COS(L*XO0) ¥ COS(M*Y0) * SIN(L*AWA) *
*  SIN(M*BWB)

F7 = (A/L) * (B/M) * COS(L*X0) * SIN(M*YO0) * SIN(L*AWA) *
*  (COS(M*BWB)-1)

F8 = (A/L) * (B/M) ¥ COS(M*YO0) * SIN(L*X0) * SIN(M*BWB) *
*  (COSL*AWA)-1)

F9 = (A/L) * (B/M) * SIN(L*X0) * SIN(M*Y0) * (COS(L*AWA)
¥ -1)*¥(COS(M*BWB)- 1)

100 FINTEGRAL(freq_count) =F1 +F2+F3 +F4+F5+F6 + F7

* + F8 + F9

C
¢ Now we need to divide by whole wall moving integral -
¢ since original program was for whole wall moving.
c
fintegral(freq_count) = fintegral(freq_count)/(a*b)
c
c special consideration given to the case(s) where xmode,
c ymode are zero!
c

if ((xmode.eq.0).and.(ymode.eq.0)) then
fintegral(freq_count) = fintegral(freq_count)*.25
goto 120

endif

if ((xmode.eq.0).or.(ymode.eq.0)) then
fintegral(freq_count) = fintegral(freq_count)*.50
goto 120

endif

120 continue

ELSE
C THE MODE IS NOT WITHIN THE DESIRED BANDWIDTH

CONTINUE
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ENDIF

C
ENDDO
ENDDO
ENDDO
C
C
IF (FREQ_COUNT .GT. 0) THEN
2000 CALL
RATIO(CENTER_FREQ,FREQ_COUNT,S ORTMAT,INTEGRAL_WEIGHT,
& fintegral, x_len gth,y_length, aw, bw,
& CMA_TO_AMA_RATIO)
ELSE
ERROR_CODE = .FALSE.
ENDIF
C
RETURN
END
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USED FOR LOCAL CMA/SPATIALLY AVERAGED AMA RATIO
SUBROUTINE MODES(UPPER_BOUND,LOWER_BOUND,

& X_LENGTH,Y_LENGTH,Z_LENGTH,count,
& xw0, yw0, aw, bw, C,num_loc,restart,

& CMA_TO_AMA_RATIO,ERROR_COQODE,

& FREQ_COUNT)

this version is designed to be compatible with 6-24-87 version
of CARCF

CALCULATES NATURAL FREQUENCIES OF ROOM
X_LENGTHBY Y_LENGTH BY Z_LENGTH

oNoNoNO RTINS

integer  count

REAL*8 BANDWIDTH
DIFFERENCE BETWEEN UPPER AND
LOWER FREQUENCY LIMITS

OO0

REAL*8 C
SPEED OF SOUND

oNoNe

REAL*8 CENTER_FREQ
CENTER FREQUENCY OF BANDWIDTH
DEFINED AS SQUARE ROOT OF THE
PRODUCT OF THE UPPER AND LOWER
FREQUENCY BOUNDS

REAL*8  CMA_TO_AMA_RATIO
RATIO OF MEAN SQUARE RESPONSE OF
CAVITY PRESSURE OBTAINED FROM
CLASSICAL MODAL ANALYSIS TO THAT
DERIVED FROM ASYMPTOTIC MODAL
ANALYSIS

LOGICAL ERROR_CODE
.TRUE. RETURNED IF MODES ARE FOUND
WITHIN THE SPECIFIED BANDWIDTH
.FALSE. RETURNED IF NO MODES
ARE FOUND

O0O0n00 000000 00000
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INTEGER*4 FREQ_COUNT
COUNTS NUMBER OF ACOUSTICAL
MODES IN SPECIFIED BANDWIDTH

REAL*8 FREQUENCY
NATURAL FREQUENCY OF MODE

INTEGER*2 1
INDEXING PARAMETER

REAL*8 LOWER_BOUND
LOWER FREQUENCY IN BANDWIDTH

REAL*8 UPPER_BOUND
UPPER FREQUENCY IN BANDWIDTH

REAL*8 X_LENGTH, Y_LENGTH, Z_LENGTH,a,b,l,m,x0,y0,awa,bwb
ROOM DIMENSIONS

real*8 fintegral

integral of modal function

of flexible wall over the flex portion
real*§ flex_int(10000)

storage of fintegral
real*§ wt(10000)

storage of weight

INTEGER*2 XMODE,YMODE,ZMODE
INDEXING PARAMETER FOR MODES

INTEGER*2 XMODEMAX,YMODEMAX,ZMODEMAX
MAXIMUM MODE INDEX

INITIALIZE SORTMAT TO ZERO, INTEGRAL_WEIGHT TO 2

REAL*8 XW0, YWO0
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COORDINATES OF FLEX PART OF WALL
REAL*8 AW, BW
DIMENSIONS OF FLEX PART OF WALL

real*8 f1, 12, 13, f4, 15, 16, f7, f8, f9
separate terms in integral

NOT SPATIALLY AVERAGED

REAL*8 ARGX,ARGY,ARGZ

INTEGER*2 INPUT_UNITI

READS FROM CAVITY.IN

INTEGER*2 LOCATION
INDEXING PARAMETER

INTEGER*2 LOOP
INDEXING PARAMETER

REAL*8 MODE(10000)
MATRIX OF FREQUENCY VALUES

REAL*8 MODE_CONTRIB
REAL*8 MODE_SUM

INTEGER*2 NUM_LOC

INTEGER*2 OUTPUT_UNIT1, OUTPUT_UNIT2, OUTPUT_UNIT3

REAL*8 P1
REAL*4  PLT_VAR

REAL*§ SHAPE
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REAL¥4 SPRAT,SPX,SPY,SPZ
SINGLE PRECISION VARIABLES FOR
PLOTTING

REAL*8 WEIGHT

INTEGER*4 X_INDEX(10000),Y_INDEX(10000),Z_INDEX(10000)

real*8 xx(100),yy(100),zz(100)
REAL*8 X_LOC,Y_LOC,Z_LOC
POSITION IN CAVITY

integer*2 restart
(see main program CARCEF for explanation)

INITIALIZE ARRAYS AND COUNTERS
DEFINE CONSTANTS

PARAMETER (Pl = 3.141592)
output_unitl = 55

DO1=1,2500
X_INDEX(D) =0
Y_INDEX(I)=0
Z_INDEX(I)=0
MODE@) =0

ENDDO

write (6,*) numloc

write (6,%) restart

WRITE (6,*) NUM_LOC

WRITE (6,*) XW0,YW0,AW BW
FREQ COUNT =0

OPEN(UNIT=52,ERR=1000,STATUS="OLD',FILE="locations.in")

a=x_length
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b = y_length
X0 =XWO0/A
Y0 =YWO0/B
AWA = AW/A
BWB =BW/B

ERROR_CODE = .TRUE.

CENTER_FREQ = DSQRT(LOWER_BOUND * UPPER_BOUND)
BANDWIDTH = UPPER_BOUND - LOWER_BOUND

CALCULATE MAXIMUM MODE INDICIES FOR SPECIFIED BAND

OO0

XMODEMAX = INT(UPPER_BOUND * 2.0 * X_LENGTH/C) +2
YMODEMAX = INT(UPPER_BOUND * 2.0 * Y_LENGTH/C) +2
ZMODEMAX = INT(UPPER_BOUND * 20 *Z_LENGTH/C) +2

DO XMODE =0, XMODEMAX
DO YMODE =0, YMODEMAX
DO ZMODE =0, ZMODEMAX
FREQUENCY =.5 * C * DSQRT((XMODE/X_LENGTH)**2.0
+ (YMODE/Y_LENGTH)**2.0
+ (ZMODE/Z_LENGTH)**2.0)
IF (FREQUENCY .GE. LOWER_BOUND ) .AND.

& (FREQUENCY .LE. UPPER_BOUND)) THEN
FREQ_COUNT = FREQ_COUNT + 1
MODE(FREQ_COUNT) = FREQUENCY
X_INDEX(FREQ_COUNT) = XMODE
Y_INDEX(FREQ_COUNT) = YMODE
Z_INDEX(FREQ_COUNT) = ZMODE

ELSE
C THE MODE IS NOT WITHIN THE DESIRED BANDWIDTH

P R

CONTINUE
ENDIF

ENDDO

ENDDO
ENDDO
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c
C
C

C

if (restart.eq.1) then
do j=1,freq_count
read(53,*) wt(j), flex_int(j), mode(j)
enddo
endif

IF (FREQ_COUNT .GT. 0) THEN
OPEN(UNIT=OUTPUT_UNIT1,ERR=1010,STATUS='NEW"',

c & FILE="SPOTS.DAT")

Ne oo oo

WRITE(OUTPUT_UNIT]1,100) X_LENGTH,Y_LENGTH,Z_LENGTH
WRITE(OUTPUT_UNIT1,10)

WRITE(OUTPUT_UNIT1,110) CENTER_FREQ,BANDWIDTH
WRITE(OUTPUT_UNIT1,10)

WRITE(OUTPUT_UNIT1,115) FREQ_COUNT
WRITE(OUTPUT_UNIT1,10)

WRITE(OUTPUT_UNIT1,10)

WRITE(OUTPUT_UNIT1,120)

WRITE(OUTPUT_UNIT1,121)

WRITE(OUTPUT_UNIT1,10)

WRITE(6,*) CENTER_FREQ,BANDWIDTH
WRITE(6,*)FREQ_COUNT

OPEN(UNIT=OUTPUT_UNIT2,ERR=1030,STATUS="NEW",
& FILE="CONTOUR.PLT")

OPEN(UNIT=OUTPUT_UNIT3,ERR=1020,STATUS="NEW",
& FILE="SURFACE.PLT")

DO LOCATION = 1, NUM_LOC
if (count.eq.1) then
read(52,*) xx(location),yy(location),zz(location)
endif
x_loc = xx(location)
y_loc = yy(location)
z_loc = zz(location)
MODE_SUM =0.0
DO LOOP = 1, FREQ_COUNT
ARGX = FLOAT(X_INDEX(LOOP)) * PI * X_LOC/X_LENGTH
ARGY = FLOAT(Y_INDEX(LOOP)) * PI1 * Y_LOC/Y_LENGTH
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ARGZ = FLOAT(Z_INDEX(LOOP)) * Pl * Z_1LOC/Z_LENGTH
SHAPE = DCOS(ARGX) * DCOS(ARGY) * DCOS(ARGZ)

need not do the rest of the calculations for every location
once is enough!

if ((location.gt.1).or.(restart.eq.1)) go to 1210

IF ( (X_INDEX(LOOP) .NE. 0 ) .AND.
(Y_INDEX(LOOP) .NE. 0) .AND.
(Z_INDEX(LOOP) .NE. 0) ) THEN

WEIGHT = 16.0
ELSEIF ( (X_INDEX(LOOP) .NE. 0 ) .AND.
_INDEX(LOOP) .NE. 0 ) .AND.
(Z_INDEX(LOOP) .EQ. 0) ) THEN
WEIGHT = 4.0
ELSEIF ( (X_INDEX(LOOP) .NE. 0 ) .AND.
(Y_INDEX(LOOP) .EQ. 0) .AND.
(Z_INDEX(LOOP) .NE. 0 ) ) THEN
WEIGHT = 8.0
ELSEIF ( (X_INDEX(LOOP) .EQ. 0 ) .AND.
(Y_INDEX(LOOP) .NE. 0 ) .AND.
(Z_INDEX(LOOP) .NE. 0 ) ) THEN
WEIGHT = 8.0
ELSEIF ( (X_INDEX(LOOP) .NE. 0) .AND.
(Y_INDEX(LOOP) .EQ. 0) .AND.
(Z_INDEX(LOOP) .EQ. 0) ) THEN
WEIGHT = 2.0
ELSEIF ( (X_INDEX(LOOP) .EQ. 0) .AND.
(Y_INDEX(LOOP) .NE. 0 ) .AND.
(Z_INDEX(LOOP) .EQ. 0) ) THEN
WEIGHT = 2.0
ELSEIF ( (X_INDEX(LOOP) .EQ. 0) .AND.
_INDEX(LOOP) .EQ. 0) .AND.
(Z_INDEX(LOOP) .NE. 0 ) ) THEN
WEIGHT = 4.0
ELSEIF ( (X_INDEX(LOOP) .EQ. 0) .AND.
(Y_INDEX(LOOP) .EQ. 0) .AND.
(Z_INDEX(LOOP) .EQ. 0) ) THEN
WEIGHT = 1.0

ELSE

WRITE(6,800)
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c
c
C

C

60

C
70

ENDIF

for portion of wall flexible the following has been added:
xmode = x_index(loop)
ymode = y_index(loop)
L=XMODE *2 * Pl
M =YMODE * 2 * PI

Fl = AW * BW

if (xmode.eq.0) then
f2=AW * BW
f3=0.
goto 60

endif

F2=BW * (A/L) * COS(L*X0) * SIN(L*AWA)
F3=BW * (A/L) * SIN(L*XO0) * (COS(L*AWA) -1)

if (ymode.eq.0) then
f4 = AW * BW
f5=0.
goto 70

endif

F4 = AW * (B/M) * COS(M*Y0) * SIN(M*BWB)
F5 = AW * (B/M) * SIN(M*Y0) * (COS(M*BWB) - 1)

if ((xmode.eq.0).and.(ymode.eq.0)) then
f6 = aw * bw
f7=0.
f8 =0.
f9=0.
go to 1005
endif

if (xmode.eq.0) then
f6 =14
f71=15
f8=0.
9=0.
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goto 1005
endif

if (ymode.eq.0) then
f6=12
f71=0.
f§=13
9=0.
goto 1005
endif

F6 = (A/L) * (B/M) * COS(L*X0) * COS(M*YO0) * SIN(L*AWA) *
*  SIN(M*BWB)
F7=(A/L)* (B/M)* COS(L*X0) * SIN(M*YO0) * SIN(L*AWA) *
*  (COS(M*BWB)-1)
F8 = (A/L) * (B/M) * COS(M*Y0) * SIN(L*XO0) * SINM*BWB) *
¥  (COS@ML*AWA)-1)
F9 = (A/L) * (B/M) * SIN(L*XO0) * SIN(M*YO) * (COS(L*AWA)
¥  -1)*(COS(M*BWB)-1)
1005 FINTEGRAL=F1+F2+F3+F4+F5+F6+F7
* +F8 + F9
C
¢ Now we need to divide by whole wall moving integral -
¢  since original program was for whole wall moving.

c
fintegral = fintegral/(a*b)

c

c special consideration given to the case(s) where xmode,

c ymode are zero!

c

if ((xmode.eq.0).and.(ymode.eq.0)) then
fintegral = fintegral*.25
goto 1205

endif

if ((xmode.eq.0).or.(ymode.eq.0)) then
fintegral = fintegral*.50
goto 1205
endif
c
1205 continue
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c
c
¢ At this point fintegral is now the ratio of

¢ Flexible integral for the partial wall to

¢ Flexible integral for the whole wall moving,

¢ where a factor of 1/4 cosine(z_index*pi*z/z_length) has
¢ been factored out of both the top and bottom.
C
C
1

210 if ((restart.ne.1).and.(location.eq.1)) then
wi(loop) = weight
flex_int(loop) = fintegral
c write(54,*) wt(loop),flex_int(loop),mode(loop)
endif

MODE_CONTRIB = SHAPE ** 2.0 * wi(loop)*

& flex_int(loop)*(mode(loop)**(-3.0))
MODE_SUM = MODE_SUM + MODE_CONTRIB
ENDDO
C
C

CMA_TO_AMA_RATIO =0.5 *(CENTER_FREQ**3.0) * MODE_SUM /

& (FREQ_COUNT*((aw*bw)/(x_length*y_length)))
WRITE(OUTPUT_UNIT1,200)
X _LOCY_LOCZ LOC,CMA_TO_AMA_RATIO

WRITE(6,*) X_LOC,Y_LOC,Z_LOC,CMA_TO_AMA_RATIO

SPX =X_LOC

SPY=Y_LOC

SPZ=Z_10C

SPRAT = CMA_TO_AMA_RATIO

PLT_VAR = SQRT(SPZ**2.0 + SPY**2.0)
WRITE(OUTPUT_UNIT3,*) PLT_VAR,SPRAT,SPX
WRITE(OUTPUT_UNIT2,*) SPRAT

OO 00606 oA

ENDDO

0

ELSE
WRITE(OUTPUT_UNIT1,900)
ENDIF

B23



CLOSE(OUTPUT_UNIT1)
CLOSE(OUTPUT_UNIT2)
CLOSE(OUTPUT_UNIT3)

No oo

WRITE(6,2000)
C
GOTO 1100
C
10 FORMAT(2X,'")
100 FORMAT(2X,'CAVITY IS F8.3,' FT BY "F8.3, FT BY 'F8.3, FT")

110 FORMAT(2X,'CENTER FREQUENCY: 'F9.2,' HZ, BANDWIDTH: F9.2,

& 'HZ)
115 FORMAT(2X,'NUMBER OF MODES IN THIS BAND: 'I8)
120 FORMAT(4X,’X LOCATION',3X,'Y LOCATION',3X,’Z LOCATION',
& 7X,'CMA TO AMA RATIO")
121 FORMAT(4X,'-~--==---- ), "3X, e eeee ',
& D, )
200 FORMAT(3(5X,F8.4),10X,F15.6)
300 FORMAT(2X,F10.6)
800 FORMAT(2X,PROBLEM WITH WEIGHT)
900 FORMAT(2X,'NO MODES IN THIS BAND)
1000 WRITE(6,1001)
1001 FORMAT(2X,'ERROR ENCOUNTERED ACCESSING CAVITY.IN')
GO TO 1100
1010 WRITE(6,1011)
1011 FORMAT(2X, ERROR ENCOUNTERED ACCESSING SPOTS.DAT)
GO TO 1100
1020 WRITE(6,1021)
1021 FORMAT(2X,ERROR ENCOUNTERED ACCESSING CONTOUR.DAT)
GO TO 1100
1030 WRITE(6,1031)
1031 FORMAT(2X,'ERROR ENCOUNTERED ACCESSING CONTOUR.PLT)
1100 CONTINUE

C
2000 FORMAT(2X,'OUTPUT IN SPOTS.DAT,CONTOUR.PLT AND

SURFACE.PLT")
C

return
END
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SUBROUTINE VARBW(INDEX,CENTER_FREQ,UPPER_FREQ,LOWER_FREQ,
& BANDWIDTH)

ROUTINE TO FIND UPPER AND LOWER FREQUENCIES AND BANDWIDTH
FOR SPECIFIED CENTER FREQUENCY

REAL*8 BANDWIDTH
REAL*8 CENTER_FREQ
REAL*8 UPPER_FREQ
REAL*8 LOWER_FREQ
INTEGER*4 INDEX

BANDWIDTH = 100. + FLOAT(INDEX) * 100.0

UPPER_FREQ = .5 * (BANDWIDTH + DSQRT( (BANDWIDTH**2.0)
& + 4.0 * CENTER_FREQ ** 2.0))

LOWER_FREQ = UPPER_FREQ - BANDWIDTH

RETURN
END
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INTEGRATION USED TO CALCULATE THE NON-DIMENSIONAL PRESSURE
RATIO FOR THE 1-DIMENSIONAL CASE

integer numratio
real fbfcratio, kex(101), press(4,101)
write(*,999)
999  format(2x,'enter endkcx')
read(*,*) endkcx
deltakcx=endkcx/100
open(52, file="data")
read(52,*) numratio
do i=1,numratio
read(52,*) fbfcratio
fubyfc=.5*(fbfcratio+sqrt((fbfcratio**2)+4))
fibyfc=.5*(-fbfcratio+sqri((fofcratio**2)+4))
b=1/(fbfcratio*sqri((fbfcratio* *2)+4))
kex(1)=0.

do j=1,100
thetafl=(kcx(j)*2*flbyfc)
thetafu=(kcx(j)*2*fubyfc)
¢ = (cos(thetafl))/((flbyfc)**2)
d = (cos(thetafu))/((fubyfc)**2)
e = (2*kex(§)*sin(thetafu))/(fubyfc)
f = (2*kex(j)*sin(thetafl))/(flbyfc)
g = (4*kex(j)*kex(§) *ci(thetafl))
h = (4*kex(G)*kex(j)*ci(thetafu))
if(kcx(j).eq.0) write(*,*) c,d,ef,g,h,b

press(i,j) = 1 + b*(c-d+e-f+g-h)
if (kcx(§).eq.0) write(*,*) press(i,j)

kex(j+1)=kex(j)+deltakex
end do

end do

open (unit=53 file="output")
write(53,111)
do i=1,100
If(i.eq.1) write(*,*) press(i,1)
write(53,110) kex(i),(press(j,i),j=1,numratio)
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I1f(i.eq.1) write(*,*) press(i,1)
end do
110  format (3x,1pe13.6,3x,4((1pe13.6),3x))
111 format (8x,'kcx’,11x,'ratiol ,10x,'ratio2',10x,'ratio3',10x, 'ratio4")

end

Function ci(x)
Real x, numerator, denominator, f, g

if (x.ge.1) then
al = 38.027264
a2 = 265.187033
a3 =335.677320
a4 = 38.102495
bl =40.021433
b2 = 322.624911
b3 = 570.236280
b4 = 157.105423

numerator = x**8 + al*(x**6) + a2*(x**4) + a3*(x**2) + a4
denominator = x**8 + bl1*(x**6) + b2*(x**4) + b3*(x**2) + b4

f = (numerator)/(denominator*x)

al = 42.242855
a2 = 302.757865
a3 =352.018498
a4 = 21.821899
bl =48.196927
b2 = 482.485984
b3 =1114.978885
b4 = 449.690326

numerator = x**8 + al*(x**6) + a2*(x**4) + a3*(x**2) + a4
denominator = x**8 + b1*(x**6) + b2*(x**4) +b3*(x**2) + b4

g = (numerator)/(denominator*x*x)

ci = f*sin(x) - g*cos(x)
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elseif (x.g1.0) then

sum = -(x**2)/4 + (x**4)/96. - (x**6)/4320. + (x**8)/322560.
& - (x**10)/36288000.
¢i=.577215665 + log(x) + sum

else
ci=0.
endif

return
end

B2§




